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ABSTRACT
In this work, we provide motivation for a zero-effort crowd-
sensing task: auto-annotated ground truth collection for
physical activity recognition. Data obtained through Smart-
phones for classification of human activities is prone to dis-
crepancies, which reiterates the need for better and larger
activity datasets. Artificial data generation algorithms fail
to efficiently generate quality instances for minority data. In
the proposed model, crowd-sourced sensor data is classified
by a robust classifier built by researchers ground up. We
nominate a Generic Classifier with ≥ 95% accuracy for this
purpose. Data collection and distribution models which en-
sure that the crowd client receives non-skewed, quality data
from locations with higher degree of activity occurrence are
elucidated upon. Also integrated within our proposed model
are Location-Specific Classifiers, which can be utilized by
developers to optimize on location-specific tasks. Effective
validation of classified activities using diverse sensor data
streams improves the proposed classifier systems and boosts
ground-truth accuracy.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Smartphone Sensing, Human Activities, Activity Classifica-
tion, Ground Truth, Annotation, Classification Complexity

1. INTRODUCTION
The de-facto methodology for collecting accurate activity

data for any micro- or complex-activity recognition based
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application has been data collection directly by the researcher
or developer whose domain interest lies in the data. Accu-
rate human subject annotated datasets are difficult to come
by, and are seldom reliable. Also, when activity datasets
are imbalanced or lack adequate representation of each class
label, one is forced to resort to artificial data generation
algorithms like SMOTE [6]. However, the incapability of
these algorithms to restrain from creating feature overlaps
between classes drives us to think of ways to generate real-
life data for under-represented activities. Furthermore, in-
situ data collection on certain subjects creates a personifica-
tion bias in the training data, thus making it erroneous for
out-of-sample classification or validation.

In parallel, recent works have proposed a hybrid of crowd-
working platforms like Amazon Mechanical Turk1 and Crowd-
Flower2 along with the Sensing-as-a-Service paradigm[18]
to offer zero-effort opportunities for Smartphone users to
make opportunistically collected sensor-data available. This
proposition, bartered in exchange for monetary incentives,
could be a popular and scalable way for researchers and de-
velopers to acquire well-indexed and context-specific datasets
as and when required.

In AnnoTainted, we provide a concise but clear descrip-
tion of such a crowd-sensing task. The issue with collect-
ing correctly annotated ground truth for human activities
is two-fold. First, lack of motivation as well as insuffi-
ciency of validation methods in this area creates an over-
head of incorrectly annotated patches. Second, even with
induced integrity of the collector, deeper insights into the
activity streams are missed due to inadequate indexing of
such datasets over time. We wish to exploit the ubiquity
of the accelerometer in Smartphones to extract suitable fea-
tures for activity recognition. We propose the use of a ro-
bust classifier, with balanced class representation and ≥ 95%
cross-validation accuracy, to be used as the benchmark for
auto-annotation of data from the crowd-worker. We define
the term crowd-worker as a generic human data collector
(paid or unpaid). Through AnnoTainted, we aim to make
the following key contributions: (a) we propose an indexing
scheme for activity-data that is based on orthodromic geo-
structures (as explained in subsection 3.1) which will, (b)
provide a probabilistically accurate activity-data inventory

1https://www.mturk.com/mturk/welcome
2http://www.crowdflower.com/
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for custom research applications in human activity recogni-
tion, and (c) using location-specific data, reduce candidate
class labels and hence the classification complexity budget
for Smartphones.

We now highlight two sample scenarios where AnnoTainted
can be applied:

1. Harry visits a park with his walking group, all of whom
have installed AnnoTainted’s proposed crowdworker
system on their Smartphones. Using our smart data
assemblage system described in subsection 4.1, the
system would already have classified the park as a
source of recurring data for activities such as walk-
ing and jogging. When a developer (crowd-client) re-
quests for walking data, Harry and his group would
be prime crowd-workers, and the park a prime loca-
tion, to source the data from. This ensures that the
developer has access to the required amount of quality
data for the requested activities without the need for
artificial data generation.

2. Consider a situation where a City Council wishes to
construct pedestrian-only lanes to facilitate the safety
and convenience of citizens. This creates a requirement
for activity information specific to that city. Anno-
Tainted’s proposed geographical indexing scheme de-
fines tiles (see subsection 3.1) which act as constituent
elements of the city area. The Council thereby uses a
collection of AnnoTainted’s Location-Specific Classi-
fiers (described in subsection 5.2) which provide in-
tuition with respect to areas or lanes frequented by
pedestrians, i.e., tiles with high occurrence of walking
or jogging. This will in turn enable the Council to plan
a layout accordingly.

The following pages describe the proposed AnnoTainted
framework in detail. The remainder of the paper is orga-
nized as follows. In subsection 3.1, we elucidate strategies
of achieving location specificity of activities. In subsec-
tion 3.2, we define the structure and composition of the ro-
bust classifier that helps co-train the place specific classifier.
The applications of the two key aspects as above are made
clearer in sections § 4 and § 5, with explicit emphasis on
being able to correctly classify micro-activities and analyze
higher-activities on a large scale.

2. RELATED WORK

2.1 Unmonitored Activity Classification
Activity recognition using inbuilt Smartphone sensors has

been a steadily growing research area in recent years. The
most preferred sensor data streams are from the accelerom-
eter, as it is a low-cost, energy-efficient sensor [15]. Roy et
al. in [16] list and describe the features extracted from raw
accelerometer data to recognize Activities of Daily Living
(ADLs). We use a super-set of the same to classify unmoni-
tored activities. However, the foremost difficulty that arises
in case of activity classification outside controlled settings is
obtaining well-annotated data streams. Several novel means
have been proposed to overcome this obstacle. For instance,
[20] illustrates the use of prior knowledge models for activ-
ity recognition using data mined from the location-driven
social network Foursquare3 to gain contextual indications.
3https://foursquare.com/

Bhattacharya et al. in [3] suggest an unsupervised learn-
ing approach that utilizes unlabelled data for human activ-
ity recognition. In contrast, most supervised learning based
techniques rely on the end user being asked to annotate the
data himself, as is illustrated in [2]. To minimize the error
due to human intervention in such approaches, we suggest
a labelling method based on a high-accuracy classifier to
aid unmonitored activity data collection from Smartphone
sensors.

2.2 Need for Quality Training Data
The most prevalent challenge in obtaining quality train-

ing data is class imbalance and ground truth insufficiency,
which is commonly overcome using Synthetic Minority Over-
sampling TEchnique (SMOTE)[6]. SMOTE generates syn-
thetic samples along the line between the minority class
and its nearest neighbor. Further improvements in accu-
racy have been brought about using Borderline-SMOTE[8],
which only over-samples the borderline instances (since they
are more likely to be misclassified). Safe-Level-SMOTE[5]
assigns weights (safe-levels) to instances and synthesizes mi-
nority instances around larger safe-levels. He et al. in [9]
propose an adaptive synthetic sampling approach to reduce
class imbalance as well as shift classification decision bound-
aries. However, all these methods manufacture artificial
data which is prone to variation and generalization, as shown
by De Souza in [7]. AnnoTainted aims to eliminate the need
for such simulated data by crowdsourcing real, accurate sen-
sor streams.

2.3 Incentivized Crowdsensing
Various approaches have been suggested to crowdsource

sensor data to cater to the needs of researchers and de-
velopers. For instance, Lane et al. in [13] propose ’pig-
gyback crowdsensing’, where data is collected opportunis-
tically based on device usage patterns. However, a ma-
jority of GPS data required to design the mobility model
described by the authors is sourced from GPS samples re-
quested for by other applications. This poses a problem
in the case of a large number of Android devices since the
Android Application Sandbox isolates individual app data
and permissions[17]. This presents a case for an incentive-
driven crowdsourcing model, where the crowd-worker gives
explicit permissions to the crowd data collection application.
Moreover, crowd-working platforms like Amazon Mechani-
cal Turk or CrowdFlower are gaining popularity as supple-
mentary sources of income. However, they are platform-
and device-independent and do not utilize the resource avail-
ability and mobility of the crowd-worker’s Smartphone. To
take advantage of the same, Sheng et al. in [18] propose
an incentive-driven paradigm called Sensing-as-a-service to
collect sensor data from Smartphones via a cloud-computing
system. AnnoTainted proposes a similar incentivized model,
though without human intervention.

3. SYSTEM FRAMEWORK
The following section describes a set of step-by-step strate-

gies and components to develop a baseline activity regula-
tion system. It discusses in detail each of the aspects of hu-
man activity recognition that we keep in mind while design-
ing AnnoTainted. As mentioned in § 1, AnnoTainted is pro-
posed to be a completely intervention-free system. There-
fore, it must evade the pitfalls of standardization incon-
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sistencies that plague the area of tapping such data from
Smartphones. In order to do so, obtaining contextual data
and the construction of robust activity classifiers remain our
primary aims.

3.1 Achieving Context
In AnnoTainted, the key requirement is to be able to

achieve fine-grained context regarding activity patterns in
distinct location structures. We bring about an amalgama-
tion of the same using the following two key context achiev-
ing concepts.

3.1.1 Area Interpretation
The area under observation for collection of data instances

is divided into atomic units to associate detailed descriptions
about physical activities identified in a said unit. We define
an orthodromic area unit called tile, which is a 3D struc-
ture of variable dimensions. The orthodromic character of
the tile corresponds to the shortest distance between two
points along an arc. This allows us to take into account the
curvature and contours of the earth while determining the
dimensions. The dimensions of the tile are determined by
fitting them in a manner such that the periphery of an area
of interest is defined by the tiles. Figure 1 is a representation
of an area of interest divided into tiles.

3.1.2 User Location
The placement of the crowd-worker within a defined tile

is achieved through GPS data. GPS, along with providing
the location details, associates with it a confidence value.
This is a measure of the range within which the provided
location is accurate. As long as the confidence value falls
within the dimensions of the tile, system accuracy remains
consistent as the location of the crowd-worker is attributed
with the appropriate tile. As a remark, it should be noted
that Android provides accuracy only with 68% confidence.
In statistical terms, it is assumed that location has a ran-
domly distributed random error, so the 68% confidence circle
represents one standard deviation. However, such a simple
distribution might not be followed in real-life applications.

3.2 Robust Generic Classifier

3.2.1 Activity Ensemble
The micro-activity (MA) set chosen for AnnoTainted con-

sists of the following primary physical activities: stationary,
walking, jogging, commuting (via motorized transport), as-
cending and descending stairs. These activities are the fun-
damental human physical movements classified through ac-
celerometer data in existing research such as [12].The re-
currence of these activities in daily human routine and their
constituent repetitive motions enable easy recognition. Higher
activities (HAs) can be defined as those obtained through
permutations of the micro-activity ensemble. Such HAs
form an extensive set and can generally be detected from
MAs. Hence our principal focus in this work will be acquir-
ing data for and classifying aforementioned micro-activities
only.

3.2.2 Frequency and Sample sizes
The sampling rate, sampling stability and noise can give

us the quality of the acceleration sensor in Smartphones.
AnnoTainted audits the in-built accelerometer sampling fre-
quency in the crowd-worker’s Smartphone and gives data

collected from the device a priority number accordingly. A
suitable minimum sampling frequency (fm) is chosen and
devices with sampling frequency less than this threshold are
invalidated for data collection as the results produced by
such devices are not considered to be accurate enough for
activity recognition. Higher sampling rates generally lead
to more accurate values due to a larger number of samples
being accessible in the time window. fm is set according
to recognition accuracy obtained through testing at various
sampling rates. The recognition accuracy is defined as the
number of accurately classified features for the defined ac-
tivity ensemble. The fm in our system is set to 32Hz, a
sampling rate that is sufficient for potential recognition of
body movements using accelerometer data, and is also sup-
ported by prior research in [14].

3.2.3 Placement and Orientation
Smartphone placement and orientation during sensor data

collection alter accelerometer and gyroscope data, which in
turn affect the classification of physical activities. This en-
forces the need for error correction and higher accuracy rates
in the measurement of the aforementioned sensor data. It
was established in [11] that consideration of orientation and
rotational variations achieved accuracies upto 85%. In or-
der to achieve higher accuracy in the sensor data obtained
through AnnoTainted, we use a rotation based approach as
described in [19], with angular velocity and rotation radius
as the elementary features for classification.

3.2.4 Feature Sets
Periodic patterns for jogging, walking and movement on

stairs are characterized by parameters such as time peri-
ods between observed peaks and magnitudes of acceleration.
Hence the feature set chosen for classification is a combina-
tion of the feature sets suggested in [16], where 3-axis ac-
celerometer and gyroscope data was used to compute a 30-
dimensional feature vector over successive time frames, and
[12], where peak acceleration values were primarily consid-
ered to generate 6 basic features and 43 summary features.
For commuting, the feature set suggested in [10](specific
to transportation mode detection) was used, where peak,
frame and segment based features were considered, includ-
ing breaking periods and stopping rate features.

3.2.5 Balanced Activity Representation
To ensure the model is not biased towards majority la-

bels, the training dataset needs to be re-calibrated if it is
skewed and certain activities are under-represented. Since
the Generic Classifier is built ground up using activity data
collected by researchers, we ensure that equal, correctly la-
belled instances of each activity are included.

4. QUALITY DATASET GENERATION
In order to best approximate correctly annotated data

generated under controlled conditions that is both relevant
and consistent, the patterns of activity aggregation have to
be determined. In order to establish the most pertinent loca-
tion, we observe the nature and trends of the data obtained,
elaborated further in this section.

4.1 Data Assemblage and Activity Trends
The instances of data collected from a tile are continuously

categorized using the generic classifier described in § 3. This
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subsection describes the probability based quantification of
a tile with the likelihood of a particular activity occurring
in the said region. This type of activity trend recognition is
important in order to effectively classify regions as hotspots
for collection of data for certain types of activities. Sys-
tems such as in [20] perform activity trend identification
by utilizing tips obtained through social media. We seek
to achieve a similar result through recognition and classi-
fication of real time activities. To this end, we implement
Exponential Weighted Moving Average (EWMA) to model
the probability of a particular activity as a function of the
past occurrences of the said activity in a specific geographi-
cal domain, hence reducing rapid morbidity in the recorded
activity trend of a place. The recurrence value (R) of an
activity, ai happening in an tile j, is described as

Rij = α ∗ Pn−1(xi = 1) + (1− α) ∗ Pn(xi = 1)

where xi is the random discrete variable that describes the
occurrence of activity ai and n is the number of recorded in-
stances until that point of time. α is the degree of weighting
decrease, which is indicated by a value between 0 and 1. The
value for this smoothing parameter α can be selected on the
basis of the importance to be given to current trending ac-
tivities, the most safest option being proportional weights
to all recorded instances. For instance, if the previously cal-
culated recurrence value for walking in a park, P(ai,Tj), is
0.830, and the probability of data instance collected being
true for the said activity is 1, with the data instance being
the 68th such collected record,

P (ai, Tj) = 0.985 ∗ 0.830 + 0.014 ∗ 1 = 0.831

This calculation, along with presenting the method, goes
to show that the continuously updating values of P(ai,Tj)
increase fractionally. The amount by which this increase is
quantified (α) is a value that is inversely proportional to
the number of records (n). Hence, the probability P(ai,Tj)
becomes less volatile as n increases. Another point to be
noted is that as the R value for one activity is updated, the
R values of all other activities in that tile are also altered due
to the non-occurrence of this activity in the data instance
set.

4.2 Optimizing Tile Dimensions
Here, we seek a trade-off between the size of the tile and

the amount of data instances that can be collected from it.
The smaller the size, the better the approximation of the
periphery of the structure. This implies that a minimal vol-
ume of the tile exists outside the boundary of the structure.
However, as the dimensions of the tile decrease, the assem-
blage of data instances from the tile that has the potential
to model meaningful data is restricted. This presents an
optimization problem which can be represented as:

maximize
T

Area(sj)

Area(Tj)

subject to fi(x) ≤ bi, i = 1, . . . ,m.

whereArea(Tj) represents the area of the Tile j andArea(sj)
is the amount of the structure that lies within tile Tj . The
minimum constraint functions fi can be one or more of
P (ai, Tj), N(ai, Tj) etc. (see Algorithm 1 for terminology).
Although the variable dimensions allow for a diverse range
of structures to be observed, for our preliminary platform

we use tiles of fixed dimensions. We integrate a solution to
the optimization problem into our dynamic tile system as a
part of our future work in this field.

4.3 Data Fetching Algorithms
When a crowd-client requests for annotated data corre-

sponding to a particular activity, AnnoTainted aims to fulfill
it while adhering to two inherent quality constraints. Firstly,
the data requirement of the crowd-client, in terms of number
of instances, should be fulfilled to the best extent possible.
Secondly, the accuracy of annotation must be kept as high
as possible. To this end, the annotated instances must be
probabilistically validated. This optimization problem can
be viewed as one that loosely translates to the well known
knapsack problem. An analogous solution is proposed and
described below.

We begin to source the data from the tile that has the
highest recurrence value for that activity. This is accom-
plished using the arguments of the maxima of the set of
recurrence values of a specific activity ai over all the tiles
until the data requirement of the crowd-client is fulfilled.
Figure 3 is a representation of the most appropriate location
(According to Algorithm 1) to source the depicted activities
from.

Algorithm 1: AnnoTainted - Data Fetching

Data: Ã, activity subset wanted
Data: N(ãi), # of instances wanted for activity ãi
Data: P (ãi, Tj), Probability of ãi at tile Tj

Data: I(ãi, Tj), Instance Set of ãi at tile Tj

Result: IF , Final Quality Data-set

Function knapsackActivityData(Ã,N)
IF = φ
/* For all Required Activities */

for i = 1, 2, . . . , |Ã| do
/* Pick Data from high P(ãi) */

sortInDescending(P (ãi, T ))
for j = 1, 2, . . . , |T| do

if Ĩ + I(ãi, tj) ≤ N(ãi) then

Ĩ = Ĩ ∪ I(ãi, tj)

else

/* n = |N(ãi)| − |Ĩ| */

Ĩ = Ĩ ∪ (In
n
⊂ I(ãi, tj))

break

IF = IF ∪ Ĩ
Ĩ = φ

return IF

4.4 Activity Validation
After physical activity classification, their validation is of

significant importance in order to eliminate incorrectly clas-
sified activities. This can be accomplished through the ap-
plication of additional sensor data streams. For a prelimi-
nary stage validation, we utilize data streams from the GPS
on the crowd-worker’s Smartphone to mine useful parame-
ters such as velocity (VGPS), altitude and acceleration(AGPS).
The aforementioned data is used to assist in determining
thresholds or restrictions which can disqualify certain mis-
classified instances. We use this data in addition to the
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Figure 1: Preliminary stage
Tile Definition

Figure 2: After Activity Vali-
dation

Figure 3: Location based ac-
tivity preference

classified activity to generate key-value pairs where the ac-
tivity is considered appropriately classified if it conforms to
the constraints summarized in Table 1. Figure 2 is a repre-
sentation of the activities after validation.

Table 1: Activity Validation Constraints
Activity Threshold
Walking VGPS < 5.7 kmph

Stationary VGPS ≈ 0 km/h & AGPS ≈ 0 m/s2

Commuting AGPS < 4 m/s2

5. LOCATION-SPECIFIC DATA
In the previous section, we discussed the plausibility and

methodology of collecting high accuracy ground-truth for
trending activities from multiple structural domains. In this
section, we discuss the motivation behind using the data col-
lected within a Tile only and using the same for any location-
specific application within the same geographical structure.
We elucidate the trade-offs of this approach and present ap-
plication scenarios of the same.

5.1 Raw Activity Stream
The raw activity data stream of the form {(data1, label1),

(data2, label2), ... } is obtained from every Tile Tj . We pro-
pose an open availability of the data stream so that develop-
ers can use the same to optimize the wide range of location-
specific classification based applications. Keeping in mind
the geographical layout of the corresponding Tiles, and by
analyzing the micro-activity stream, the developer will be
able to gain deeper complex activity (hiking etc.) insights,
as compared to data with no context.

Solving another problem, location-sensitive data could pos-
sibly result in representation of only a subset of activities in
any given tile Tj . As the implementation of a multi-class
classifier calls for l(l − 1)/2 binary classifiers, each trained
with data from a distinct pair of classes, a reduced number
of class-labels is only a boon to any Smartphone-sensing ap-
plication, as the classification can now take place on devices
with a low-energy budget.

With an increase in the number of class labels, not only
do the number of decision hyperplanes increase, there is also
a fall in accuracy due to wrongly classified points when the
kernel functions are simple. With more complex functions,
it is obvious that per-classification time is compounded. Nu-
merous approaches to counter the complexity have been pro-
posed, such as those detailed in [1],[4]. However, we suggest

eliminating the cause of the problem, to some extent, by re-
ducing the number of class labels to (l− k), as described in
the next subsection.

5.2 Location-Specific Classifier
We propose building a Location-specific Classifier (LC)

for a Tile Tj with possible class labels a1, ...ak ⊆ A. Be-
ing a k-nomial classifier rather than an l-nomial one, where
l = |A| and k ≤ l, the LC is faster and more cost-effective
computationally. We use supervised learning algorithms to
train the LC using the accelerometer feature vectors that
have been labelled by the GC. In doing so, we use only the
instances collected from a particular geographical Tile Tj .
As more instances emerge from Tj , we apply an incremental
learning approach to include these in the training set of the
LC. To do so, we define an epoch - a set IE of instances
with a fixed cardinality c. After every epoch of feature vec-
tors collected from the tile Tj (after every set of c instances)
being classified by the GC, the LC is updated taking into
account this labeled data.

5.2.1 Loss of Accuracy
The trade-off in using a more specific (l − k) class clas-

sifier rather than the generic l-class one is the loss of accu-
racy. This is because the LC is trained only on the basis
of instances that have been labelled by the GC until the
end of the last epoch. Any instance of a new activity is
therefore not present in the training set of the LC, and is
hence treated as an anomaly. To overcome this challenge,
the epoch after which the LC is remodeled has to be suffi-
ciently short. However, he usefulness of the LC is limited
by its poor accuracy in comparison to the GC. In order to
reduce computational latency and still maintain a threshold
level of accuracy (determined by the purpose of usage), we
suggest a mechanism as described below.

5.2.2 Classifier Confidence Correction
Every time a user arrives in a region of interest, location-

specific classifiers are used in either conjunction or alter-
nation with the generic validating classifier, to schedule a
sequence of classification of MAs. In real time, choosing the
classifier should be done by a weighted random scheduling
algorithm. For any given person, for a confidence thresh-
old ε ∈ R[0, 1], we use the LC with probability ε and both
LC and GC with probability (1 - ε). Every time both the
classifiers are used, a match (or mismatch) of the classified
label updates the confidence value of the LC. We propose an
epoch to end when the confidence of the classifier has fallen
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beyond a particular threshold and cannot be sustained any
longer without updating. The application developer entity
is liable to set the required accuracy in order to schedule the
alternation of the LC and the GC accordingly.

6. CONCLUSION AND FUTURE WORK
In this paper, we discuss a methodology for crowdsourcing

classifier-annotated sensor data for physical activity recogni-
tion. We propose a geographical matrix of Tiles to segregate
the collected data and learn the degree of recurrence of each
activity in a particular domain. Based on this scheme of
indexing, we are able to provide quality datasets for custom
application developers and researchers. Further, we use this
location-specific data to reduce classification complexity in
domain-restricted applications.

As future work, we plan to impose temporal domain re-
strictions on data collection in addition to the spatial restric-
tions described in subsection 4.3 by sourcing activity data
from periods with highest likelihood of the activity being
performed. Also, we aim to devise a payment model for the
crowd-worker, keeping in mind the hardware capabilities of
the device and the degree of mobility of the user. In addition
to GPS data, we also plan to source data from alternative
sensors to design contextually relevant restrictions.
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